Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Res ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582242

RESUMO

The Stroop Task is a well-known neuropsychological task developed to investigate conflict processing in the human brain. Our group has utilized direct intracranial neural recordings in various brain regions during performance of a modified color-word Stroop Task to gain a mechanistic understanding of non-emotional human conflict processing. The purpose of this review article is to: 1) synthesize our own studies into a model of human conflict processing, 2) review the current literature on the Stroop Task and other conflict tasks to put our research in context, and 3) describe how these studies define a network in conflict processing. The figures presented are reprinted from our prior publications and key publications referenced in the manuscript. We summarize all studies to date that employ invasive intracranial recordings in humans during performance of conflict-inducing tasks. For our own studies, we analyzed local field potentials (LFPs) from patients with implanted stereotactic electroencephalography (SEEG) electrodes, and we observed intracortical oscillation patterns as well as intercortical temporal relationships in the hippocampus, amygdala, and orbitofrontal cortex (OFC) during the cue-processing phase of a modified Stroop Task. Our findings suggest that non-emotional human conflict processing involves modulation across multiple frequency bands within and between brain structures.

2.
Clin Neurophysiol ; 152: 93-111, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37208270

RESUMO

Neurostimulation has diverse clinical applications and potential as a treatment for medically refractory movement disorders, epilepsy, and other neurological disorders. However, the parameters used to program electrodes-polarity, pulse width, amplitude, and frequency-and how they are adjusted have remained largely untouched since the 1970 s. This review summarizes the state-of-the-art in Deep Brain Stimulation (DBS) and highlights the need for further research to uncover the physiological mechanisms of neurostimulation. We focus on studies that reveal the potential for clinicians to use waveform parameters to selectively stimulate neural tissue for therapeutic benefit, while avoiding activating tissue associated with adverse effects. DBS uses cathodic monophasic rectangular pulses with passive recharging in clinical practice to treat neurological conditions such as Parkinson's Disease. However, research has shown that stimulation efficiency can be improved, and side effects reduced, through modulating parameters and adding novel waveform properties. These developments can prolong implantable pulse generator lifespan, reducing costs and surgery-associated risks. Waveform parameters can stimulate neurons based on axon orientation and intrinsic structural properties, providing clinicians with more precise targeting of neural pathways. These findings could expand the spectrum of diseases treatable with neuromodulation and improve patient outcomes.


Assuntos
Estimulação Encefálica Profunda , Doenças do Sistema Nervoso , Doença de Parkinson , Humanos , Estimulação Encefálica Profunda/efeitos adversos , Eletrodos , Neurofisiologia
4.
Front Hum Neurosci ; 16: 933401, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35959242

RESUMO

RATIONALE: Deep brain stimulation (DBS) of the hippocampus is proposed for enhancement of memory impaired by injury or disease. Many pre-clinical DBS paradigms can be addressed in epilepsy patients undergoing intracranial monitoring for seizure localization, since they already have electrodes implanted in brain areas of interest. Even though epilepsy is usually not a memory disorder targeted by DBS, the studies can nevertheless model other memory-impacting disorders, such as Traumatic Brain Injury (TBI). METHODS: Human patients undergoing Phase II invasive monitoring for intractable epilepsy were implanted with depth electrodes capable of recording neurophysiological signals. Subjects performed a delayed-match-to-sample (DMS) memory task while hippocampal ensembles from CA1 and CA3 cell layers were recorded to estimate a multi-input, multi-output (MIMO) model of CA3-to-CA1 neural encoding and a memory decoding model (MDM) to decode memory information from CA3 and CA1 neuronal signals. After model estimation, subjects again performed the DMS task while either MIMO-based or MDM-based patterned stimulation was delivered to CA1 electrode sites during the encoding phase of the DMS trials. Each subject was sorted (post hoc) by prior experience of repeated and/or mild-to-moderate brain injury (RMBI), TBI, or no history (control) and scored for percentage successful delayed recognition (DR) recall on stimulated vs. non-stimulated DMS trials. The subject's medical history was unknown to the experimenters until after individual subject memory retention results were scored. RESULTS: When examined compared to control subjects, both TBI and RMBI subjects showed increased memory retention in response to both MIMO and MDM-based hippocampal stimulation. Furthermore, effects of stimulation were also greater in subjects who were evaluated as having pre-existing mild-to-moderate memory impairment. CONCLUSION: These results show that hippocampal stimulation for memory facilitation was more beneficial for subjects who had previously suffered a brain injury (other than epilepsy), compared to control (epilepsy) subjects who had not suffered a brain injury. This study demonstrates that the epilepsy/intracranial recording model can be extended to test the ability of DBS to restore memory function in subjects who previously suffered a brain injury other than epilepsy, and support further investigation into the beneficial effect of DBS in TBI patients.

5.
J Neural Eng ; 19(4)2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35803209

RESUMO

Objective.This study aimed to characterize hippocampal neural signatures of uncertainty by measuring beta band power in the period prior to movement cue.Approach. Participants with epilepsy were implanted with hippocampal depth electrodes for stereo electroencephalographic (SEEG) monitoring. Hippocampal beta (13-30 Hz) power changes have been observed during motor tasks such as the direct reach (DR) and Go/No-Go (GNG) tasks. The primary difference between the tasks is the presence of uncertainty about whether movement should be executed. Previous research on cortical responses to uncertainty has found that baseline beta power changes with uncertainty. SEEG data were sampled throughout phases of the DR and GNG tasks. Beta-band power during the fixation phase was compared between the DR and GNG task using a Wilcoxon rank sum test. This unpaired test was also used to analyze response times from cue to task completion between tasks.Main results.Eight patients who performed both reaching tasks were analyzed in this study. Movement response times in the GNG task were on average 210 milliseconds slower than in the DR task. All patients exhibited a significantly increased response latency in the GNG task compared to the DR task (Wilcoxon rank-sum p-value < 0.001). Six out of eight patients demonstrated statistically significant differences in beta power in single hippocampal contacts between the fixation phases of the GNG and DR tasks. At the group level, baseline beta power was significantly lower in the GNG task than in the DR task (Wilcoxon rank-sum p-value < 0.001).Significance. This novel study found that, in the presence of task uncertainty, baseline beta power in the hippocampus is lower than in its absence. This finding implicates movement uncertainty as an important factor in baseline hippocampal beta power during movement preparation.


Assuntos
Eletroencefalografia , Movimento , Hipocampo , Humanos , Movimento/fisiologia , Tempo de Reação/fisiologia , Incerteza
6.
Front Syst Neurosci ; 12: 24, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29915532

RESUMO

Sensory feedback is a critical aspect of motor control rehabilitation following paralysis or amputation. Current human studies have demonstrated the ability to deliver some of this sensory information via brain-machine interfaces, although further testing is needed to understand the stimulation parameters effect on sensation. Here, we report a systematic evaluation of somatosensory restoration in humans, using cortical stimulation with subdural mini-electrocorticography (mini-ECoG) grids. Nine epilepsy patients undergoing implantation of cortical electrodes for seizure localization were also implanted with a subdural 64-channel mini-ECoG grid over the hand area of the primary somatosensory cortex (S1). We mapped the somatotopic location and size of receptive fields evoked by stimulation of individual channels of the mini-ECoG grid. We determined the effects on perception by varying stimulus parameters of pulse width, current amplitude, and frequency. Finally, a target localization task was used to demonstrate the use of artificial sensation in a behavioral task. We found a replicable somatotopic representation of the hand on the mini-ECoG grid across most subjects during electrical stimulation. The stimulus-evoked sensations were usually of artificial quality, but in some cases were more natural and of a cutaneous or proprioceptive nature. Increases in pulse width, current strength and frequency generally produced similar quality sensations at the same somatotopic location, but with a perception of increased intensity. The subjects produced near perfect performance when using the evoked sensory information in target acquisition tasks. These findings indicate that electrical stimulation of somatosensory cortex through mini-ECoG grids has considerable potential for restoring useful sensation to patients with paralysis and amputation.

7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 1664-1667, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28324947

RESUMO

A sparse Laguerre-Volterra autoregressive model has been developed as feature extraction from subdural human EEG data for seizure prediction in temporal lobe epilepsy. The use of Laguerre-Volterra kernel can compactly yield an autoregressive model of longer system memory without increasing the number of the coefficients. In 6 sets of seizure, we used a sparse Laguerre-Volterra autoregressive model with 6 coefficients and the decay parameter of 0.2 and obtained the 10-fold cross-validation prediction results of high Matthews correlation coefficients (0.7-1) and low prediction errors (<;15%). These results demonstrate that the sparse Laguerre-Volterra autoregressive model is effective in the feature extraction for seizure prediction. Finally, this sparse Laguerre-Volterra method can be easily adapted to a potentially more powerful nonlinear autoregressive model as the feature extraction rather than linear autoregressive model that we are currently using.


Assuntos
Epilepsia do Lobo Temporal , Convulsões , Eletroencefalografia , Humanos , Modelos Lineares , Dinâmica não Linear
8.
J Neurosci ; 35(46): 15466-76, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26586832

RESUMO

Humans shape their hands to grasp, manipulate objects, and to communicate. From nonhuman primate studies, we know that visual and motor properties for grasps can be derived from cells in the posterior parietal cortex (PPC). Are non-grasp-related hand shapes in humans represented similarly? Here we show for the first time how single neurons in the PPC of humans are selective for particular imagined hand shapes independent of graspable objects. We find that motor imagery to shape the hand can be successfully decoded from the PPC by implementing a version of the popular Rock-Paper-Scissors game and its extension Rock-Paper-Scissors-Lizard-Spock. By simultaneous presentation of visual and auditory cues, we can discriminate motor imagery from visual information and show differences in auditory and visual information processing in the PPC. These results also demonstrate that neural signals from human PPC can be used to drive a dexterous cortical neuroprosthesis. SIGNIFICANCE STATEMENT: This study shows for the first time hand-shape decoding from human PPC. Unlike nonhuman primate studies in which the visual stimuli are the objects to be grasped, the visually cued hand shapes that we use are independent of the stimuli. Furthermore, we can show that distinct neuronal populations are activated for the visual cue and the imagined hand shape. Additionally we found that auditory and visual stimuli that cue the same hand shape are processed differently in PPC. Early on in a trial, only the visual stimuli and not the auditory stimuli can be decoded. During the later stages of a trial, the motor imagery for a particular hand shape can be decoded for both modalities.


Assuntos
Mapeamento Encefálico , Força da Mão/fisiologia , Imaginação/fisiologia , Lobo Parietal/fisiologia , Estimulação Acústica , Sinais (Psicologia) , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Modelos Neurológicos , Movimento , Neurônios/fisiologia , Oxigênio/sangue , Lobo Parietal/irrigação sanguínea , Lobo Parietal/citologia , Estimulação Luminosa
9.
Science ; 348(6237): 906-10, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25999506

RESUMO

Nonhuman primate and human studies have suggested that populations of neurons in the posterior parietal cortex (PPC) may represent high-level aspects of action planning that can be used to control external devices as part of a brain-machine interface. However, there is no direct neuron-recording evidence that human PPC is involved in action planning, and the suitability of these signals for neuroprosthetic control has not been tested. We recorded neural population activity with arrays of microelectrodes implanted in the PPC of a tetraplegic subject. Motor imagery could be decoded from these neural populations, including imagined goals, trajectories, and types of movement. These findings indicate that the PPC of humans represents high-level, cognitive aspects of action and that the PPC can be a rich source for cognitive control signals for neural prosthetics that assist paralyzed patients.


Assuntos
Neuroimagem Funcional/métodos , Próteses Neurais , Neurônios/fisiologia , Lobo Parietal/fisiopatologia , Quadriplegia/fisiopatologia , Quadriplegia/terapia , Interfaces Cérebro-Computador , Cognição , Eletrodos Implantados , Humanos , Microeletrodos , Atividade Motora , Movimento
10.
Epilepsy Behav ; 42: 44-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25499162

RESUMO

BACKGROUND: External trigeminal nerve stimulation (eTNS) is an emerging noninvasive therapy for drug-resistant epilepsy (DRE). We report the long-term safety and efficacy of eTNS after completion of a phase II randomized controlled clinical trial for drug-resistant epilepsy. METHODS: This was a prospective open-label long-term study. Subjects who completed the phase II randomized controlled trial of eTNS for DRE were offered long-term follow-up for 1year. Subjects who were originally randomized to control settings were crossed over to effective device parameters (30s on, 30s off, pulse duration of 250s, frequency of 120Hz). Efficacy was assessed using last observation carried forward or parametric imputation methods for missing data points. Outcomes included change in median seizure frequency, RRATIO, and 50% responder rate. RESULTS: Thirty-five of 50 subjects from the acute double-blind randomized controlled study continued in the long-term study. External trigeminal nerve stimulation was well tolerated. No serious device-related adverse events occurred through 12months of long-term treatment. At six and twelve months, the median seizure frequency for the original treatment group decreased by -2.39 seizures per month at 6 months (-27.4%) and -3.03 seizures per month at 12 months (-34.8%), respectively, from the initial baseline (p<0.05, signed-rank test). The 50% responder rates at three, six, and twelve months were 36.8% for the treatment group and 30.6% for all subjects. CONCLUSION: The results provide long-term evidence that external trigeminal nerve stimulation is a safe and promising long-term treatment for drug-resistant epilepsy.


Assuntos
Terapia por Estimulação Elétrica/métodos , Epilepsia/terapia , Nervo Trigêmeo/fisiologia , Adulto , Método Duplo-Cego , Resistência a Medicamentos , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Resultado do Tratamento , Adulto Jovem
11.
Artigo em Inglês | MEDLINE | ID: mdl-25571312

RESUMO

New interventions using neuromodulatory devices such as vagus nerve stimulation, deep brain stimulation and responsive neurostimulation are available or under study for the treatment of refractory epilepsy. Since the actual mechanisms of the onset and termination of the seizure are still unclear, most researchers or clinicians determine the optimal stimulation parameters through trial-and-error procedures. It is necessary to further explore what types of electrical stimulation parameters (these may include stimulation frequency, amplitude, duration, interval pattern, and location) constitute a set of optimal stimulation paradigms to suppress seizures. In a previous study, we developed an in vitro epilepsy model using hippocampal slices from patients suffering from mesial temporal lobe epilepsy. Using a planar multi-electrode array system, inter-ictal activity from human hippocampal slices was consistently recorded. In this study, we have further transferred this in vitro seizure model to a testbed for exploring the possible neurostimulation paradigms to inhibit inter-ictal spikes. The methodology used to collect the electrophysiological data, the approach to apply different electrical stimulation parameters to the slices are provided in this paper. The results show that this experimental testbed will provide a platform for testing the optimal stimulation parameters of seizure cessation. We expect this testbed will expedite the process for identifying the most effective parameters, and may ultimately be used to guide programming of new stimulating paradigms for neuromodulatory devices.


Assuntos
Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/fisiopatologia , Potenciais de Ação , Estimulação Encefálica Profunda , Estimulação Elétrica , Eletroencefalografia/métodos , Feminino , Hipocampo/patologia , Humanos , Técnicas In Vitro , Masculino , Técnicas de Cultura de Tecidos
12.
Artigo em Inglês | MEDLINE | ID: mdl-25571314

RESUMO

Inter-ictal activity is studied in hippocampal slices resected from patients with epilepsy using local field potential recording. Inter-ictal activity in the dentate gyrus (DG) is induced by high-potassium (8 mM), low-magnesium (0.25 mM) aCSF with additional 100 µM 4-aminopyridine(4-AP). The dynamics of the inter-ictal activity is investigated by developing the first return map with inter-pulse intervals. Unstable periodic orbits (UPOs) are detected in the hippocampal slice at the DG area according to both the topological recurrence method and the periodic orbit transform method. Surrogate analysis suggests the presence of UPOs in hippocampal slices from patients with epilepsy. This finding also suggests that inter-ictal activity is a chaotic system and will allow us to apply chaos control techniques to manipulate inter-ictal activity.


Assuntos
Giro Denteado/fisiopatologia , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia/fisiopatologia , Potenciais de Ação , Giro Denteado/patologia , Epilepsia/patologia , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/cirurgia , Humanos , Técnicas In Vitro , Microtomia
13.
Neurology ; 80(9): 786-91, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23365066

RESUMO

OBJECTIVE: To explore the safety and efficacy of external trigeminal nerve stimulation (eTNS) in patients with drug-resistant epilepsy (DRE) using a double-blind randomized controlled trial design, and to test the suitability of treatment and control parameters in preparation for a phase III multicenter clinical trial. METHODS: This is a double-blind randomized active-control trial in DRE. Fifty subjects with 2 or more partial onset seizures per month (complex partial or tonic-clonic) entered a 6-week baseline period, and then were evaluated at 6, 12, and 18 weeks during the acute treatment period. Subjects were randomized to treatment (eTNS 120 Hz) or control (eTNS 2 Hz) parameters. RESULTS: At entry, subjects were highly drug-resistant, averaging 8.7 seizures per month (treatment group) and 4.8 seizures per month (active controls). On average, subjects failed 3.35 antiepileptic drugs prior to enrollment, with an average duration of epilepsy of 21.5 years (treatment group) and 23.7 years (active control group), respectively. eTNS was well-tolerated. Side effects included anxiety (4%), headache (4%), and skin irritation (14%). The responder rate, defined as >50% reduction in seizure frequency, was 30.2% for the treatment group vs 21.1% for the active control group for the 18-week treatment period (not significant, p = 0.31, generalized estimating equation [GEE] model). The treatment group experienced a significant within-group improvement in responder rate over the 18-week treatment period (from 17.8% at 6 weeks to 40.5% at 18 weeks, p = 0.01, GEE). Subjects in the treatment group were more likely to respond than patients randomized to control (odds ratio 1.73, confidence interval 0.59-0.51). eTNS was associated with reductions in seizure frequency as measured by the response ratio (p = 0.04, analysis of variance [ANOVA]), and improvements in mood on the Beck Depression Inventory (p = 0.02, ANOVA). CONCLUSIONS: This study provides preliminary evidence that eTNS is safe and may be effective in subjects with DRE. Side effects were primarily limited to anxiety, headache, and skin irritation. These results will serve as a basis to inform and power a larger multicenter phase III clinical trial. CLASSIFICATION OF EVIDENCE: This phase II study provides Class II evidence that trigeminal nerve stimulation may be safe and effective in reducing seizures in people with DRE.


Assuntos
Epilepsia/terapia , Estimulação Elétrica Nervosa Transcutânea/métodos , Nervo Trigêmeo/fisiologia , Adulto , Ensaios Clínicos Fase III como Assunto , Método Duplo-Cego , Epilepsia/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Multicêntricos como Assunto , Estimulação Elétrica Nervosa Transcutânea/efeitos adversos , Estimulação Elétrica Nervosa Transcutânea/instrumentação , Resultado do Tratamento , Nervo Trigêmeo/fisiopatologia , Adulto Jovem
14.
IEEE Pulse ; 3(5): 17-22, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23014702

RESUMO

Remind, which stands for "restorative encoding memory integration neural device," is a Defense Advanced Research Projects Agency (DARPA)-sponsored program to construct the first-ever cognitive prosthesis to replace lost memory function and enhance the existing memory capacity in animals and, ultimately, in humans. Reaching this goal involves understanding something fundamental about the brain that has not been understood previously: how the brain internally codes memories. In developing a hippocampal prosthesis for the rat, we have been able to demonstrate a multiple-input, multiple- output (MIMO) nonlinear model that predicts in real time the spatiotemporal codes for specific memories required for correct performance on a standard learning/memory task, i.e., delayed-nonmatch-to-sample (DNMS) memory. The MIMO model has been tested successfully in a number of contexts; most notably, in animals with a pharmacologically disabled hippocampus, we were able to reinstate long-term memories necessary for correct DNMS behavior by substituting a MIMO model-predicted code, delivered by electrical stimulation to the hippocampus through an array of electrodes, resulting in spatiotemporal hippocampal activity that is normally generated endogenously. We also have shown that delivering the same model-predicted code to electrode-implanted control animals with a normally functioning hippocampus substantially enhances animals memory capacity above control levels. These results in rodents have formed the basis for extending the MIMO model to nonhuman primates; this is now underway as the last step of the REMIND program before developing a MIMO-based cognitive prosthesis for humans.


Assuntos
Hipocampo/fisiologia , Memória/fisiologia , Próteses Neurais , Animais , Cognição/fisiologia , Estimulação Encefálica Profunda , Humanos , Ratos
15.
Artigo em Inglês | MEDLINE | ID: mdl-23367092

RESUMO

Epilepsy is a medical syndrome that produces seizures affecting a variety of mental and physical functions. The actual mechanisms of the onset and termination of the seizure are still unclear. While medical therapies can suppress the symptoms of seizures, 30% of patients do not respond well. Temporal lobectomy is a common surgical treatment for medically refractory epilepsy. Part of the hippocampus is removed from the patient. In this study, we have developed an in vitro epileptic model in human hippocampal slices resected from patients suffering from intractable mesial temporal lobe epilepsy. Using a planar multielectrode array system, spatio-temporal inter-ictal activity can be consistently recorded in high-potassium (8 mM), low-magnesium (0.25 mM) aCSF with additional 100 µM 4-aminopyridine. The induced inter-ictal activity can be recorded in different regions including dentate, CA1 and Subiculum. We hope the experimental model built in this study will help us understand more about seizure generation, as well as providing insights into prevention and novel therapeutics.


Assuntos
Eletroencefalografia/instrumentação , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Hipocampo/fisiopatologia , Microeletrodos , Rede Nervosa/fisiopatologia , Técnicas de Cultura de Órgãos/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Epilepsy Behav ; 21(4): 391-6, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21724471

RESUMO

The purpose of this prospective observational investigation was to determine whether the frequency of premenstrual dysphoric disorder (PMDD) and the severity of PMDD symptoms differ between women with epilepsy and controls without epilepsy and whether there exists a relationship between the severity of PMDD symptoms and some epileptic, antiepileptic drug, and reproductive endocrine features. The results suggest that epilepsy, antiepileptic drug levels, ovulatory status, and hormone levels and ratios may all influence PMDD in women with epilepsy. PMDD severity scores may be greater in people with right-sided than in those with left-sided epilepsy, and in people with temporal than in those with nontemporal epileptic foci. PMDD severity scores may be greater with anovulatory cycles, and scores may correlate negatively with midluteal serum progesterone levels and positively with midluteal estradiol/progesterone ratios. Mood score may vary with particular antiepileptic drugs, favoring carbamazepine and lamotrigine over levetiracetam. PMDD severity scores may correlate directly with carbamazepine levels, whereas they correlate inversely with lamotrigine levels.


Assuntos
Anticonvulsivantes/efeitos adversos , Epilepsia/complicações , Síndrome Pré-Menstrual/complicações , Adolescente , Adulto , Anticonvulsivantes/uso terapêutico , Epilepsia/sangue , Epilepsia/tratamento farmacológico , Estradiol/sangue , Feminino , Fase Folicular/sangue , Humanos , Fase Luteal/sangue , Pessoa de Meia-Idade , Síndrome Pré-Menstrual/sangue , Progesterona/sangue , Estudos Prospectivos , Índice de Gravidade de Doença
17.
Neurology ; 59(6 Suppl 4): S31-7, 2002 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-12270966

RESUMO

Our understanding of a precise dose-response relationship for vagus nerve stimulation (VNS) therapy in the treatment of seizures is still evolving. Because several parameters are involved in VNS therapy, the individual contribution of each is not well understood. This review discusses the efficacy of stimulation parameters used in the VNS clinical trials. The background, influence on safety and efficacy, and role in helping to achieve seizure control are discussed for each VNS device parameter: output current, pulse duration, frequency, and duty cycle. Finally, we provide an algorithm for the adjustment of VNS device settings (see Appendices).


Assuntos
Terapia por Estimulação Elétrica/métodos , Terapia por Estimulação Elétrica/normas , Epilepsia/terapia , Nervo Vago/fisiologia , Humanos , Guias de Prática Clínica como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...